

Contents lists available at ScienceDirect

Plant Physiology and Biochemistry

journal homepage: www.elsevier.com/locate/plaphy

Research article

Metabolomic and physico-chemical approach unravel dynamic regulation of calcium in sweet cherry fruit physiology

Michail Michailidis, Evangelos Karagiannis, Georgia Tanou, Katerina Karamanoli, Athina Lazaridou, Theodora Matsi, Athanassios Molassiotis*

Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

ARTICLE INFO

Article history: Received 5 April 2017 Received in revised form 11 May 2017 Accepted 15 May 2017 Available online 17 May 2017

Keywords:
Calcium
Fruit quality
Metabolomics
Physiological disorders
Post-harvest physiology
Pre-harvest physiology
Sweet cherry

ABSTRACT

Calcium (Ca^2) nutrition has a significant role in fruit physiology; however, the underlying mechanism is still unclear. In this study, fruit quality in response to $CaCl_2$, applied via foliar sprays (Ca^2) or/and hydrocooling water (Ca_{HC}), was characterized in 'Lapins' cherries at harvest, just after cold storage (20 days at 0 °C) as well as after cold storage followed by 2 days at 20 °C, herein defined as shelf-life period. Data indicated that pre- and post-harvest Ca^{2+} applications increased total Ca^{2+} and cell wall bound Ca^{2+} , respectively. Treatment with Ca reduced cracking whereas $Ca + Ca_{HC}$ condition depressed stem browning. Both skin penetration and stem removal were affected by Ca^{2+} feeding. Also, several colorand antioxidant-related parameters were induced by Ca^{2+} treatments. Metabolomic analysis revealed significant alterations in primary metabolites among the Ca^{2+} treatments, including sugars (eg., glucose, fructose), soluble alcohols (eg., arabitol, sorbitol), organic acids (eg., malate, quinate) and amino acids (eg., glycine, beta-alanine). This work helps to improve our knowledge on the fruit's response to Ca^{2+} nutrition.

© 2017 Elsevier Masson SAS. All rights reserved.